Cadmium-inducible expression of the yeast GSH1 gene requires a functional sulfur-amino acid regulatory network.
نویسندگان
چکیده
Glutathione (gamma-l-glutamyl-l-cysteinylglycine) is an important antioxidant molecule, helping to buffer the cell against free radicals and toxic electrophiles. Expression of the yeast GSH1 gene, encoding the first enzyme involved in glutathione biosynthesis, gamma-glutamylcysteine synthetase, is regulated by oxidants and the heavy metal cadmium at the level of transcription. We present evidence that the transcription factors involved in controlling the network of sulfur amino acid metabolism genes are also responsible for regulating GSH1 expression in response to cadmium. In particular the transcription factors Met-4, Met-31, and Met-32 are essential for cadmium-mediated regulation of gene expression, whereas the DNA-binding protein Cbf1 appears to play a negative role in controlling GSH1 expression.
منابع مشابه
Bioassay of cadmium using a DNA microarray: genome-wide expression patterns of Saccharomyces cerevisiae response to cadmium.
DNA microarray technology enables genome-wide detection of cell response at the transcriptional level. We are planning to make bioassay systems that can detect environmental chemicals to screen for potential bioreactive agents. To develop a DNA microarray for our purposes, the changes in gene expression underlying the yeast stress response to cadmium were analyzed by a microarray of total mRNA....
متن کاملTranscriptional plasticity through differential assembly of a multiprotein activation complex
Cell adaptation to the environment often involves induction of complex gene expression programs under the control of specific transcriptional activators. For instance, in response to cadmium, budding yeast induces transcription of the sulfur amino acid biosynthetic genes through the basic-leucine zipper activator Met4, and also launches a program of substitution of abundant glycolytic enzymes b...
متن کاملAssembly of a bZIP-bHLH transcription activation complex: formation of the yeast Cbf1-Met4-Met28 complex is regulated through Met28 stimulation of Cbf1 DNA binding.
Transcriptional activation of sulfur amino acid metabolism in yeast is dependent on a multi-functional factor, the centromere-binding factor 1 (Cbf1) and on two specific transcription factors, Met4 and Met28. Cbf1 belongs to the basic helix-loop-helix DNA-binding protein family while Met4 and Met28 are two basic leucine zipper (bZIP) factors. We have shown previously that in cell extracts, the ...
متن کاملMOLECULAR ANALYSIS OF THE SULFUR REGULATORY CIRCUIT OF NEUROSPORA CRASSA
The sulfur regulatory circuit of the filamentous fungus, Neurospora crassa, consists of a set of unlinked structural genes which encode sulfur catabolic and two major regulatory genes which govern their expression. The cys-3 regulatory gene encode a transacting regulatory protein which activates the expression of cys-14 and ars, whereas the other regulatory genes Scon-l and Scon-2 appear to...
متن کاملYct1p, a novel, high-affinity, cysteine-specific transporter from the yeast Saccharomyces cerevisiae.
Cysteine transport in the yeast Saccharomyces cerevisiae is mediated by at least eight different permeases, none of which are specific for cysteine. We describe a novel, high-affinity, (K(m) = 55 microM), cysteine-specific transporter encoded by the ORF YLL055w that was initially identified by a combined strategy of data mining, bioinformatics, and genetic analysis. Null mutants of YLL055w, but...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 275 42 شماره
صفحات -
تاریخ انتشار 2000